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Preface

Welcome to the enlightening journey through the pages of “AquaFortR: Streamlin-
ing Atmospheric Science, Oceanography, Climate, and Water Research with
Fortran-accelerated R”. It is an educational book aimed, in general, at R program-
mers who want to increase the performance of their codes using Fortran, particularly for
bachelor’s, master’s, and PhD students and researchers in the fields mentioned above.
Typically, simulation and modelling of the environmental processes are accomplished on
the grid level in which the investigation region is discretised to numerous grid points in
time and space. Consequently, these simulations produce enormous data sets and pro-
cessing this data extends beyond the current average personal computer capacity. Never-
theless, a few have access to high-performance computing infrastructures. The possibility
of speeding up calculations and modelling exists in each PC through compiled program-
ming languages such as Fortran. This solution speeds up computations and can reduce
the CO2 emissions drastically. Fortran is well-suited for numerical and scientific compu-
tations due to its array processing capabilities, performance, and efficiency. Combining
R with Fortran, data can be smoothly wrangled and visualised. In this book, you will
gain invaluable insights into seamlessly speeding up R scripts by harnessing the power
of Fortran. You will acquire essential perspectives into speeding up your package using
simple Fortran codes. Furthermore, you will accumulate tweaks to accelerate your scripts
or packages, and supplementary reading will prove to be both advantageous and highly
beneficial for further optimisation and efficiency.
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Chapter 1

Introduction

This chapter briefly introduces the R programming language and how to install R on dif-
ferent operating systems. Furthermore, we will have a look at the installation of RStudio.
Finally, we will learn briefly about Fortran.

The book is designed to cater to individuals with a foundational understanding of pro-
gramming, irrespective of their familiarity with a specific programming language.

1.1 R
R is a powerful and versatile open-source language and environment for statistical comput-
ing and graphics (R Core Team, 2023). R was developed to facilitate data manipulation,
exploration, and visualisation, providing various statistical and graphical tools.

The R environment is designed for effective data handling, array and matrix operations,
and is a well-developed and simple programming language (R Core Team, 2023). Its
syntax is concise and expressive, making it an accessible language for newbies and seasoned
programmers. R can perform tasks either by executing scripts or interactively. The
latter is advantageous for beginners and during the first stages of script development.
The interactive environment is accessible through command lines or various integrated
development environments (IDEs), such RStudio.

Many factors play an important role in the popularity of R. For example, the ability to
produce graphics with a publication’s quality. Simultaneously, the users maintain full
control over customising the plots according to their preferences and intricate details.
Another significant factor is its ability to be extended to meet the user’s demand. The
Comprehensive R Archive Network (CRAN) contains an extensive array of libraries and
packages to extend R’s functionality for various tasks. With over 20447 available pack-
ages (March 2024), the CRAN package repository is a testament to R’s versatility and
adaptability.
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4 CHAPTER 1. INTRODUCTION

Tidyverse (Wickham et al., 2019; Wickham, 2023) is the most popular bundle of R pack-
ages for data science. It was developed by Hadley Wickham and his team. The common
shared design among tidyverse packages increases the consistency across functions and
makes each new function or package a little easier to comprehend and utilise (Wickham
et al., 2023).

Many packages have been developed for spatial data analysis to address various challeng-
ing tasks. R-spatial provides a rich set of packages for handling spatial or spatiotemporal
data. For example, sf (Pebesma, 2018, 2024a; Pebesma & Bivand, 2023) provides simple
features access in R, which is a standardized method for encoding spatial vector data.
The stars package (Pebesma, 2024b) aims to handle spatiotemporal arrays. Additionally,
the terra package (Hijmans, 2024) works with spatial data and has the ability to process
large datasets on the disk when loading into memory (RAM) is not feasible.

Furthermore, research produces a large data sets; therefore, it is essential to store them
according to the FAIR principles (Findability, Accessibility, Interoperability, and Reuse
of digital assets; Wilkinson et al. (2016)). NetCDF and HDF5 are among the most
prominent scientific data formats owing to their numerous capabilities. The ncdf4 package
(Pierce, 2023) delivers a high-level R interface to data files written using Unidata’s netCDF
library. Additionally, rhdf5 (Fischer et al., 2023) provides an interface between HDF5 and
R.

Regarding the integration of other programming languages, R has diverse interfaces, which
are either a fundamental implementation of R or attainable via another R package (Cham-
bers, 2016). The fundamental interfaces are .Call(), .C(), and .Fortran() to C and
Fortran. The development of the Rcpp package (Eddelbuettel et al., 2024) has revolu-
tionised seamless access to C++. Python is also accessible using the reticulate package
(Ushey et al., 2024). Finally, the Java interface was granted using the rJava package
(Urbanek, 2024).

In conclusion, R is a valuable tool in the Earth System, as it can effectively tackle multi-
farious scientific tasks and address numerous outstanding research inquiries.

1.2 Fortran
Fortran, short for Formula Translation, is one of the oldest high-level programming lan-
guages. It was first developed in the 1950s, and is nonetheless widely used in scientific and
engineering applications. Key features of Fortran include its ability to efficiently handle
arrays and matrices, making it well-suited for numerical computations. Additionally, For-
tran has a simple and straightforward syntax that makes it easy to learn and use, because
it is possible to write mathematical formulas almost as they written in mathematical texts
(Metcalf et al., 2018).

https://r-spatial.org
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Fortran has been revised multiple times, with the most recent iteration being Fortran 2023.
Another important feature of Fortran is its support for parallel programming, enabling
developers to take advantage of multicore processors and high-performance computing
architectures.

There are frequently numerous good reasons to integrate different programming languages
to achieve tasks. Interoperability with C programming language is a feature that was intro-
duced with Fortran 95 (Metcalf et al., 2018). Given that C is widely used for system-level
programming, many of the other languages include support for C. Therefore, the C Ap-
plication Programming Interface (API) can also be used to connect two non-C languages
(Chirila & Lohmann, 2014). For instance, in atmospheric modelling, Fortran is used for
its high performance and capcity to handle large data sets, while C is utilised for its
efficiency and control over memory usage.

Noteworthy, developing software using Fortran necessitates utilisation of its primitive
procedures and developing from scratch. This is because Fortran is not similar to scripting
languages (i.e. R) that requires a special environment (Masuda, 2020). However, Fortran is
privileged with its persistent backward compatibility, resulting in the usability of countless
(legacy) codes written decades ago.

Since R was designed to streamline data analysis and statistics (Wickham, 2015) and For-
tran is renowned for its high performance, it makes seance to integrate the two languages.
It should be noted that both programming languages present arrays in column-major
order, which makes it easier to bridge without causing confusion. Additionally, R is
developed using Fortran, C, and R programming languages, and it features .Call and
.External() functions that allows users to utilise compiled code from other R packages.

Despite the development of newer programming languages, Fortran remains a popular
choice for many scientists and engineers due to its reliability, efficiency, and ability to
handle large amounts of data.

1.3 Installation
R

Installation of R differs according to the operating system:

• The webpage provides information on installing R according to the Linux distribu-
tion (https://cran.r-project.org/bin/linux/).

• For Windows, the executable can be downloaded from (https://cran.r-project.org/
bin/windows/base/). Additionally, previous releases of R for Windows exit at https:
//cran.r-project.org/bin/windows/base/old/.

• For macOS, various releases and versions are accessible at https://cran.r-project.

https://wg5-fortran.org/f2023.html
https://cran.r-project.org/bin/linux/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/bin/macosx/
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org/bin/macosx/.

RStudio

As mentioned earlier, RStudio is an IDE for R. Although it is the most prominent, other
IDEs exist, such as Jupyter Notebook and Visual Studio Code. In this book, RStudio will
be the main IDE. To install Rstudio, visit the posit to download the suitable installers
(https://posit.co/download/rstudio-desktop/).

Fortran

Fortran doesn’t require an explicit installation, unlike interpreted languages such as R.
The source code would be translated to the machine language using the Fortran compiler,
and then it can be executed. Therefore, it is important to make sure that a Fortran
compiler, i.e., the GNU Fortran (https://gcc.gnu.org/fortran/) (gfortran) compiler, exists
in the working machine.

• In the majority of Linux distributions, the GCC compilers, including gfortran, come
pre-installed.

• For Windows, installing rtools should ensure the existence of gfortran
• For macOS, binaries for gfortran are available at (https://gcc.gnu.org/wiki/

GFortranBinaries). Furthermore, more information is available on R for macOS at
https://cran.r-project.org/bin/macosx/tools/.

https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/macosx/
https://posit.co/download/rstudio-desktop/
https://gcc.gnu.org/fortran/
https://gcc.gnu.org/wiki/GFortranBinaries
https://gcc.gnu.org/wiki/GFortranBinaries
https://cran.r-project.org/bin/macosx/tools/


Chapter 2

Accelerate R Scripts with Fortran

In this chapter, we will compare the efficiency of running three computationally demand-
ing examples in pure R script versus using another R script with the core computations
performed in Fortran.

2.1 2D Coss-Correlation
In signal processing, cross-correlation measures similarity between two signals as a func-
tion of the displacement of one relative to the other (Wang, 2019). It can deliver infor-
mation about the time lag between the two signals. 2D cross-correlation is often applied
in computer vision for visual tracking. For example, it is used in template matching,
feature detection, and motion tracking. 2D cross-correlation also plays an important role
in convolutional networks and machine learning.

In atmospheric science, oceanography, climate, and water research, 2D cross-correlation
can be applied in various ways. For example, it can be used to estimate ocean surface
currents (Warren et al., 2016), cloud tracking using satellite imagery (Seelig et al., 2021),
and Particle Image Velocimetry (PIV) in fluid dynamics applications (Willert & Gharib,
1991).

The 2D cross-correlation of an array 𝐹(𝑀,𝑁), and array 𝐺(𝑃 ,𝑄), can be given as the array
𝐶𝐶(𝑀+𝑃−1,𝑁+𝑄−1) as shown in Equation 2.1.

𝐶𝐶(𝑠,𝑡) =
𝑀−1
∑
𝑚=0

𝑁−1
∑
𝑛=0

𝐹(𝑚,𝑛)𝐺(𝑚−𝑠,𝑛−𝑡) (2.1)

where 𝑠 varies between −(𝑃 −1) and (𝑀 −1) while 𝑡 varies between −(𝑄−1) and (𝑁 −1).
𝐹 and 𝐺 ∈ 𝑅.

Now, let us define the xcorr2D_r function as shown in Listing 2.1. The function receives

7
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two matrices or arrays a & b and return the full cross-correlation plane cc.

Moving forward, we can define the xcorr2d_f subroutine in Fortran as shown in List-
ing 2.2. Subroutines are generally the approach for integrating Fortran in R. Function
in Fortran return a single value with no option of altering the input arguments, while
subroutines have the ability to perform complex tasks while altering input arguments.
This proofs to be helpful e.g., in solving equations system.

Another imperative point is to define the dimension of the arrays when passing them to
Fortran (i.e. explicit-shape arrays). To illustrate, m, n, p, q, k, l are the dimension
of input arrays aand b, and the out array cc.

Since Fortran is a compiled language, we need to save the subroutine in xcorr2D.f90 file
and compile it using: R CMD SHLIB xcorr2D.f90.

Note

Please use the terminal tab in Rstudio or open a new terminal using Alt+Shift+R

As mentioned earlier, we need to pass the dimension of the arrays to Fortran. Therefore,
it would logical to write a wrapping function for Fortran subroutine that provides other
input arguments.

In the wrapper function (Listing 2.3), we initially require loading the shared object (.so or
.dll), which is the compiled Fortran subroutine, as dyn.load("path/to/xcorr2D.so").
Furthermore, it is important to prepare other input variables for Fortran such as the
dimensions of the input and output arrays. Imperatively, data types should be approached
carefully. Before calling .Fortran(), all storage mode of the variables in R was converted
to the appropriate type using either as.double() or as.integer(). If the wrong type is
passed, it can result in a hard-to-catch error or unexpected results1.

Important

On Windows, R CMD SHLIB produces dynamic-link library (dll) files. Please adjust
the library extension in R functions according to your OS.

Now, we can use an example to compare the performance of the two functions. In order
to do so, microbenchmark package (Mersmann, 2024) and ggplot2 (Wickham, 2016;
Wickham et al., 2024) are required.

The obtained benchmarking data allows (mbm) for a quantitative comparison of the
computational efficiency between the two methods. By printing “mbm” in the console
(print(mbm)) it is evident that Fortran outperforms the R implementation of 2D

1Writing R Extensions, 5.2 Interface functions .C and .Fortran
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cross-correlation by a factor of ~10. The significance of leveraging Fortran becomes
evident in Figure 2.1.

library(microbenchmark)
library(ggplot2)

set.seed(72)
# Assume a
a <- structure(runif(64), dim = c(8L, 8L))
# Assume b
b <- structure(runif(64), dim = c(8L, 8L))
mbm <- microbenchmark(

xcorr2D_r0 = xcorr2D_r0(a, b),
xcorr2D_f0 = xcorr2D_f0(a, b)

)

autoplot(mbm) +
stat_summary(

fun = "median",
geom = "crossbar",
width = 0.6,
colour = "red"

)

xcorr2D_r0

xcorr2D_f0

100 1000 10000
Time [microseconds]

Figure 2.1: Performance comparison of 2D Cross-correlation in R and Fortran. Median
is shown as red vertical line.
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2.2 2D Convolution
Convolution and cross-correlation are both operations applied to two dimensional data
(e.g., matrix). Cross-correlation involves sliding a kernel (filter) across a matrix, while
convolution involves sliding a flipped kernel across an matrix (Draelos, 2019). Most spatial
data in earth science are is discretised resulting in large data sets. Sometimes, these data
sets include noise which can obscure meaningful patterns and relationships. One of the
prominent methods to remove this nose while preserving important features and structures
is the Gaussian smoothing filter. Gaussian smoothing is often achieved by convolution
where 𝐹 is the original data, and 𝐺 is the kernel representing the 2D Gaussian coefficients.

The 2D convolution of an array 𝐹(𝑀,𝑁), and array 𝐺(𝑃,𝑄), can be given as the array
𝐶𝑜𝑛𝑣(𝑀+𝑃−1,𝑁+𝑄−1). ℎ𝑣 means that 𝐺 is flipped.

𝐶𝑜𝑛𝑣(𝑠,𝑡) =
𝑀−1
∑
𝑚=0

𝑁−1
∑
𝑛=0

𝐹(𝑚,𝑛)𝐺ℎ𝑣
(𝑚−𝑠,𝑛−𝑡) (2.2)

where 𝑠 varies between −(𝑃 −1) and (𝑀 −1) while 𝑡 varies between −(𝑄−1) and (𝑁 −1).
𝐹 and 𝐺 ∈ 𝑅.

Indeed, it is possible to flip the second array and utilise the functions from Section 2.1.
Nevertheless, our focus is on the comprehensive workflow. Listing 2.4 presents the imple-
mentation of convolution in R, whereas Listing 2.5 demonstrates the Fortran version.

Note

A Gaussian smoothing filter can be applied to an array a using b as the Gaussian ker-
nel or the 2D Gaussian coefficients. However, the convolution and cross-correlation
can be optimised using the Fast Fourier Transform (FFT). See Chapter 4.

The gfortran compiler is also capable of creating shared libraries. It allows for easy addi-
tion of other flags, such as enabling the generation of the run-time check (-fcheck=all).
The code below shows two options for compiling conv2D.f90 by R or the gfortran com-
piler.

# R
R CMD SHLIB conv2D.f90

# gfortran on Unix-like
gfortran -shared conv2D.f90 -o conv2D.so

# gfortran on Windows
gfortran -shared conv2D.f90 -o conv2D.dll
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In R wrapper function, .C64() from dotCall64 package (Gerber et al., 2018; Gerber &
Mösinger, 2023) will be used instead of .Fortran(). According to Gerber et al. (2018),
.C64() transcends other foreign function interfaces in many aspects:

• It supports long vectors.
• The SIGNATURE argument ensures that the interfaced R objects are of the specified

types
• The INTENT argument helps avoid unnecessary copies of R objects between lan-

guages.

In Listing 2.6, the basic input arguments, such as the dimensions of input and output
arrays, are prepared. Afterwards, the SIGNATURE is defined as six integers and three
doubles corresponding to the required types in the subroutine. INTENT will ensure that
only the conv argument is copied between R and Fortran. This is particularly important
when processing large data set, where coping the subroutine arguments extends beyond
the available memory (RAM).

library(microbenchmark)
library(ggplot2)

set.seed(72)
# Assume a
a <- structure(runif(64), dim = c(8L, 8L))
# Assume b
b <- structure(runif(64), dim = c(8L, 8L))
mbm <- microbenchmark(

conv2D_r0 = conv2D_r0(a, b),
conv2D_f0 = conv2D_f0(a, b)

)

autoplot(mbm) +
stat_summary(

fun = "mean",
geom = "crossbar",
width = 0.6,
colour = "red"

)
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conv2D_r0

conv2D_f0

300 1000 3000 10000 30000
Time [microseconds]

Figure 2.2: Performance comparison of 2D Convolution in R and Fortran. Median is
shown as red vertical line.

Similar to cross-correlation calculation, the Fortran implementation of convolution out-
performs the R one by a factor of ~10. Performing convolution in large data set using R
and Fortran is beneficial since it reduce the required computational resources.

Question

After learning about .Fortran() and .C64(), you can use one of the two examples
above and compare the performance of the two interfaces using microbenchmark().
Which function is faster?

2.3 Convective Available Potential Energy (CAPE)
According to the Glossary of Meteorology, CAPE is “the potential energy of an air par-
cel due to positive buoyancy, which is a useful tool for forecasting, parameterising, and
estimating the potential updraft strength of convective clouds.” CAPE is calculated as
follows (Stull, 2016):

𝐶𝐴𝑃𝐸 = 𝑅𝑑

𝑝𝐸𝐿

∑
𝑝𝐿𝐹𝐶

(𝑇𝑝 − 𝑇𝑣).𝑙𝑛(𝑝𝑏𝑜𝑡𝑡𝑜𝑚
𝑝𝑡𝑜𝑝

) (2.3)

where 𝑅𝑑 is the gas constant for dry air, 𝑇𝑝 is the parcel temperature, 𝑇𝑒 is the environ-
ment temperature, 𝑝 is pressure, 𝐿𝐹𝐶 is the Level of Free Convection, and 𝐸𝐿 is the
Equilibrium Level.

https://glossary.ametsoc.org/wiki/Convective_available_potential_energy
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In a warming climate, CAPE is expected to increase (Chen et al., 2020), which can result
in an elevated risk of thunderstorms. It is crucial for humanity to quantify the future risk
for proper preparation and mitigation. Typically, thunderstorms are investigated with
convective-permitting modelling (CPM) where the horizontal resolution is less than 4km.
CPM simulations produce vast amount of data sets, and CAPE estimation at a specific
gridpoint and time is an integration along the vertical profile (Equation 2.3).

Given the rapid advancements in computing power, it is anticipated that CPM is ex-
pected to be performed at finer horizontal and vertical resolution, thereby increasing the
complexity of the CAPE estimation. It is essential that the enhancement of computing
power is accompanied by responsible management and resource allocation.

Because the CAPE calculation scripts are highly complex and lengthy, the necessary
codes are only available in the supplementary materials. Additionally, to test the two
implementations of CAPE, the AquaFortR package was installed to utilise the example
data. See Listing 2.7.

Important

Foremost, the Fortran subroutine need to be complied as shown in previous sections.
The path to the shared library cape_f.so in cape_f.R file should be adapted to the
correct path.

As mentioned, integration between R and Fortran should be accomplished through subrou-
tines. Nevertheless, some calculations are complex, and using functions or other subrou-
tines is inevitable. In cape.f90, a module containing all the required utilities was written,
and then the main subroutine was included. The approach ensures cape_f has access to
the module and is simultaneously available to R.

Exploring Figure 2.3, it is evident that the implementation of Fortran is faster than R
by a factor of ~28, proofing that integrating Fortran in R is vital for performance and
beneficial for the environment.

library(microbenchmark)
library(ggplot2)

mbm <- microbenchmark(
cape_r = cape_r0(t_parcel, dwpt_parcel, mr_parcel,

Pressure, Temperature, MixingRatio,
vtc = TRUE

),
cape_f = cape_f0(t_parcel, dwpt_parcel, mr_parcel,

Pressure, Temperature, MixingRatio,
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vtc = TRUE
)

)

autoplot(mbm) +
stat_summary(

fun = "mean",
geom = "crossbar",
width = 0.6,
colour = "red"

)

cape_r

cape_f

1e+02 1e+03 1e+04 1e+05
Time [microseconds]

Figure 2.3: Performance comparison of CAPE in R and Fortran
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Listing 2.1 Cross-correlation in R
xcorr2D_r0 <- function(a, b) {

# the full CC matrix
cc_row <- nrow(a) + nrow(b) - 1
cc_col <- ncol(a) + ncol(b) - 1
cc <- matrix(1:c(cc_row * cc_col),

byrow = FALSE, ncol = cc_col
)

# obtain possible shifts
min_row_shift <- -(nrow(b) - 1)
max_row_shift <- (nrow(a) - 1)
min_col_shift <- -(ncol(b) - 1)
max_col_shift <- (ncol(a) - 1)

# Padded matrix
rows_padded <- abs(min_row_shift) +

nrow(a) + abs(max_row_shift)
cols_padded <- abs(min_col_shift) +

ncol(a) + abs(max_col_shift)
# a
padded_a <- matrix(0,

nrow = rows_padded,
ncol = cols_padded

)
padded_a[

(abs(min_row_shift) + 1):(abs(min_row_shift) + nrow(a)),
(abs(min_col_shift) + 1):(abs(min_col_shift) + ncol(a))

] <- a

for (icol in 1:cc_col) {
for (irow in 1:cc_row) {
icc <- irow + ((icol - 1) * cc_row)
cols <- (icol):(icol + ncol(b) - 1)
rows <- (irow):(irow + nrow(b) - 1)
# b
padded_b <- array(0,
dim = c(rows_padded, cols_padded)

)
padded_b[rows, cols] <- b

cc[irow, icol] <- sum(padded_a * padded_b)
}

}

return(cc)
}
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Listing 2.2 Cross-correlation in Fortran
subroutine xcorr2d_f(m, n, p, q, k, l, a, b, cc)

implicit none
integer :: m, n, p, q, k, l
double precision, dimension(m, n) :: a
double precision, dimension(p, q) :: b
double precision, dimension(k, l) :: cc
! dummy vars
integer :: min_row_shift, min_col_shift
integer :: max_row_shift, max_col_shift
integer :: rows_padded, cols_padded
integer :: icol, irow, icc, icol2, irow2
real, allocatable, dimension(:, :) :: padded_a, padded_b

! obtain possible shfits
min_row_shift = -1*(p - 1)
max_row_shift = m - 1
min_col_shift = -1*(q - 1)
max_col_shift = n - 1

! Padded arrray
rows_padded = abs(min_row_shift) + m + abs(max_row_shift)
cols_padded = abs(min_col_shift) + n + abs(max_col_shift)
! A
allocate (padded_a(rows_padded, cols_padded))
padded_a = 0.0
padded_a((abs(min_row_shift) + 1):(abs(min_row_shift) + m), &

(abs(min_col_shift) + 1):(abs(min_col_shift) + n)) = a

! B
allocate (padded_b(rows_padded, cols_padded))
padded_b = 0.0
do icol = 1, l

do irow = 1, k
icc = irow + ((icol - 1)*k)
icol2 = icol + q - 1
irow2 = irow + p - 1
padded_b(irow:irow2, icol:icol2) = b
cc(irow, icol) = sum(padded_a*padded_b)
padded_b = 0.0

end do
end do

end subroutine xcorr2d_f
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Listing 2.3 Cross-correlation wrapping function
xcorr2D_f0 <- function(a, b) {

# Please adjust the path to your setup.
dyn.load("AquaFortR_Codes/xcorr2D.so")

# the full CC matrix
cc_row <- nrow(a) + nrow(b) - 1
cc_col <- ncol(a) + ncol(b) - 1
cc <- matrix(1:c(cc_row * cc_col), byrow = FALSE, ncol = cc_col)

cc<- .Fortran("xcorr2d_f",
m = as.integer(dim(a)[1]),
n = as.integer(dim(a)[2]),
p = as.integer(dim(b)[1]),
q = as.integer(dim(b)[2]),
k = as.integer(cc_row),
l = as.integer(cc_row),
a = as.double(a),
b = as.double(b),
cc = as.double(cc)

)$cc

return(cc)
}
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Listing 2.4 Convolution in R
conv2D_r0 <- function(a, b) {

# the full convolution matrix
conv_row <- nrow(a) + nrow(b) - 1
conv_col <- ncol(a) + ncol(b) - 1
conv <- matrix(1:c(conv_row * conv_col), byrow = FALSE, ncol = conv_col)

# obtain possible shifts
min_row_shift <- -(nrow(b) - 1)
max_row_shift <- (nrow(a) - 1)
min_col_shift <- -(ncol(b) - 1)
max_col_shift <- (ncol(a) - 1)

# Padded matrix
rows_padded <- abs(min_row_shift) + nrow(a) + abs(max_row_shift)
cols_padded <- abs(min_col_shift) + ncol(a) + abs(max_col_shift)
# a
padded_a <- matrix(0, nrow = rows_padded, ncol = cols_padded)
padded_a[

(abs(min_row_shift) + 1):(abs(min_row_shift) + nrow(a)),
(abs(min_col_shift) + 1):(abs(min_col_shift) + ncol(a))

] <- a

for (icol in 1:conv_col) {
for (irow in 1:conv_row) {
iconv <- irow + ((icol - 1) * conv_row)
cols <- (icol):(icol + ncol(b) - 1)
rows <- (irow):(irow + nrow(b) - 1)
# b
padded_b <- array(0, dim = c(rows_padded, cols_padded))
# flip the kernel i.e. b
padded_b[rows, cols] <- b[nrow(b):1, ncol(b):1]

conv[irow, icol] <- sum(padded_a * padded_b)
}

}

return(conv)
}
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Listing 2.5 Convolution in Fortran
subroutine conv2d_f(m, n, p, q, k, l, a, b, conv)

implicit none
integer :: m, n, p, q, k, l, i, j
double precision, dimension(m, n) :: a
double precision, dimension(p, q) :: b
double precision, dimension(k, l) :: conv
! dummy vars
integer :: min_row_shift, min_col_shift
integer :: max_row_shift, max_col_shift
integer :: rows_padded, cols_padded
integer :: icol, irow, iconv, icol2, irow2
real, allocatable, dimension(:, :) :: padded_a, padded_b

! obtain possible shfits
min_row_shift = -1*(p - 1)
max_row_shift = m - 1
min_col_shift = -1*(q - 1)
max_col_shift = n - 1

! Padded arrray
rows_padded = abs(min_row_shift) + m + abs(max_row_shift)
cols_padded = abs(min_col_shift) + n + abs(max_col_shift)
! A
allocate (padded_a(rows_padded, cols_padded))
padded_a = 0.0
padded_a((abs(min_row_shift) + 1):(abs(min_row_shift) + m), &

(abs(min_col_shift) + 1):(abs(min_col_shift) + n)) = a

! B
allocate (padded_b(rows_padded, cols_padded))
padded_b = 0.0
do icol = 1, l

do irow = 1, k
iconv = irow + ((icol - 1)*k)
icol2 = icol + q - 1
irow2 = irow + p - 1
padded_b(irow:irow2, icol:icol2) = b(p:1:-1,q:1:-1)
conv(irow, icol) = sum(padded_a*padded_b)
padded_b = 0.0

end do
end do

end subroutine conv2d_f
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Listing 2.6 Convolution wrapping function
conv2D_f0 <- function(a, b) {

require(dotCall64)
dyn.load("AquaFortR_Codes/conv2D.so")

m <- nrow(a)
n <- ncol(b)

p <- nrow(b)
q <- ncol(b)
# the full convolution matrix
conv_row <- m + p - 1
conv_col <- n + q - 1
conv <- matrix(0,

ncol = conv_col,
nrow = conv_row

)

conv <- .C64("conv2d_f",
SIGNATURE = c(
rep("integer", 6),
rep("double", 3)),

INTENT = c(rep("r",8), "rw"),
m, n, p, q,
k = conv_row,
l = conv_col,
a = a, b = b,
conv = conv

)$conv

return(conv)
}
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Listing 2.7 CAPE implementation in R and Fortran
if (!require(AquaFortR)) {

remotes::install_github("AHomoudi/AquaFortR", subdir = "RPackage")
}

library(AquaFortR)
data("radiosonde")

Temperature <- radiosonde$temp + 273.15 # K
Dewpoint <- radiosonde$dpt + 273.15 # K
Pressure <- radiosonde$pressure # hPa
# Mixing ratio
MixingRatio <- mixing_ratio_from_dewpoint(Dewpoint, Pressure)
t_parcel <- Temperature[1]
dwpt_parcel <- Dewpoint[1]
mr_parcel <- MixingRatio[1]

source("AquaFortR_Codes/cape_r.R")
source("AquaFortR_Codes/cape_f.R")
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Chapter 3

Accelerate R Packages with Fortran

The chapter focuses on wrapping the routines developed in the previous chapter in the R
package.

3.1 Introduction
A package in R is a bundle of R code, data, and documentation designed to perform a
specific task or a set of tasks (Wickham & Bryan, 2023). Packages are the fundamental
units of reproducible R code. Packaging has many benefits:

• It produces packages that are easily downloaded and used.
• It forces a tidy code and work process.
• It enables the re-usage of code from and for other projects.
• Files rapidly multiply when using foreign languages such as C, C++, or Fortran;

thus, packaging makes it easier to maintain and manage dependencies and ports.

Many tools are available to facilitate developing R packages, such as devtools, usethis,
and testthat. Additionally, RStudio operates as an invaluable companion. To start
the development of an R package within RStudio, navigate to File > New Project
> New Directory > R Package, and then proceed to create the project. Alterna-
tively, you can use the devtools::create("/path/to/package/location/") or
usethis::create_package("/path/to/package/location/") functions.

By employing usethis::use_c(), you can easily incorporate the necessary infrastructure
to utilise compiled code. It’s vital to ensure that your package is properly licensed. Various
license templates are available through usethis, including the Creative Commons (e.g.,
CC BY 4.0), which can be implemented via usethis::use_ccby_license().

Figure 3.1 shows a skeleton of a typical R package called foo. R code is placed in the R/
directory, while the compiled code resides in the src/ directory. R provides a standard-
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Figure 3.1: R package structure

ised method of documenting packages. The DESCRIPTION is generated with the package
template and contains essential documentation, including the package’s title, what the
package does, the author, and dependencies. Additionally, the SystemRequirements is
important in case the package depends on libraries or tools external to R, e.g., FFTW or
GNU make.

The R documentation files .Rd are stored within the man/ folder. When employing
devtools for package development, the .Rd files are automatically modified when the
specially formatted “roxgen comments” above R source codes are modified (Wickham &
Bryan, 2023). Thus, it is important to run devtools::document() whenever a function
is completed. The NAMESPACE file is a fundamental component of a package. It delivers a
context for looking up the value of an object associated with a name (Wickham & Bryan,
2023). Typically, it is modified automatically by roygen2 and contains routines such as
export to make the package functions visible, import to import all objects from another
package’s namespace or importForm to import selected objects, and useDynLib() for
packages with compiled code to register routines from DLL.

The second edition of the R Packages book by Hadley Wickham and Jennifer Bryan,
particularly the chapter “The Whole Game”, offers essential insights and presents a com-
prehensive overview of creating an R package.

https://r-pkgs.org/whole-game.html
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3.2 Developing AquaFortR
In this section, we will wrap the routines developed in Chapter 2 within an R package.
For simplicity, we will focus on implementing 2D cross-correlation here. In the package
ecosystem, it is advantageous to avoid the .Fortran interface. The interface is mainly
tailored for Fortran 77, predates any support for ‘modern’ Fortran, and carries a significant
overhead. Therefore, we will use .Call the modern interface to C/C++.

The development consists mainly of three stages:

• Writing the Fortran subroutine
• Crafting C functions to interact between R and Fortran
• And finally, creating an R function to call the C function.

3.2.1 Fortran Subroutine

The best approach to organising Fortran code with an R package is to use modules,
storing each module in individual files. The intrinsic module iso_c_binding ensures that
precisely the same variable type and kind is used in C and Fortran.

Listing 3.1 shows the structure of the Fortran file AquaFortRmodulef.f90. For-
tran files can multiply rapidly, and thus, managing module dependencies can be
a tedious task. Numbering the files and writing the routines sequentially, such as
AquaFortRmodulesf001.f90 to AquaFortRmodulesf00n.f90, can serve as a practical
workaround.

Listing 3.1 Fortran file structure
module AquaFortRmodule

use, intrinsic :: iso_c_binding
implicit none

contains
! place subroutines and functions
! ...
! ...
! ...

end module AquaFortRmodule

Listing 3.2 shows the subroutine xcorr2d_f. The differences in comparison to the script
version in Listing 2.2 are:

• The kind of the variable is defined according to iso_c_binding. Integers are of the
c_int kind, while double precision variables are defined as real with the c_double
kind.

• Typically, variables are passed to Fortran (C) by reference (value). The value
attribute allows passing by value to Fortran.

https://gcc.gnu.org/onlinedocs/gfortran/Intrinsic-Types.html
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• Using bind() facilitates the interoperability of Fortran procedures with C. The
binding label is the name by which the C processer recognises the Fortran procedure.
The F77_ prefixes in C add a trailing underscore.

Listing 3.2 Cross-correlation in Fortran in R package
subroutine xcorr2d_f(m, n, p, q, k, l, a, b, cc) bind(C, name="xcorr2d_f_")

implicit none
integer(kind=c_int), intent(in), value :: m, n, p, q, k, l
real(kind=c_double), intent(in), dimension(m, n) :: a
real(kind=c_double), intent(in), dimension(p, q) :: b
real(kind=c_double), intent(out), dimension(k, l) :: cc
! dummy vars
integer(kind=c_int) :: min_row_shift, min_col_shift
integer(kind=c_int) :: max_row_shift, max_col_shift
integer(kind=c_int) :: rows_padded, cols_padded
integer(kind=c_int) :: icol, irow, icc, icol2, irow2
real(kind=c_double), allocatable, dimension(:, :) :: padded_a, padded_b

! The rest of the subroutine is similar to Listing 2.2
! or it can be found in src/AquaFortRmodulef.f90

end subroutine xcorr2d_f

3.2.2 C Functions

Now, we write C functions that communicate between Fortran and R. The R API has
many entry points for the C code. To use the public stable API, the header files in
Listing 3.3 should be included in the AquaFortRmodulec.c. Additionally, stdlib.h is
included for NULL. It is recommended to use R_NO_REMAP so all API functions have the
prefix R_ or Rf_.

Listing 3.3 C headers
#define R_NO_REMAP
#include <R.h>
#include <Rinternals.h> // Access to "public" internal API
#include <stdlib.h> // for NULL

F77_NAME() is used to declare the Fortran subroutine in C. Note that variables with value
attribute should not be pointers, as shown in Listing 3.4.

Listing 3.4 Declaring Fortran routine in C
void F77_NAME(xcorr2d_f)(int m, int n, int p, int q, int k, int l,

double *a, double *b, double *cc);

In Listing 3.5, the c_xcorr2d_f function communicates between R and C, and invoke the
declared Fortran subroutine in C. Everything that moves between R and C should be SEXP.
Additional variables required by the Fortran subroutine, such as matrix dimensions, are
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created within the C code. The F77_CALL() macro is to call the Fortran routine, declared
by F77_NAME(), from C. The PROTECT and UNPROTECT macros are required to save the
result, i.e., ret, from being destroyed during R’s garbage collection. Variables of type
double need to be altered to real before being passed to Fortran.

Listing 3.5 Calling Fortran subroutine in C
extern SEXP c_xcorr2d_f(SEXP a, SEXP b)
{

int m = Rf_nrows(a);
int n = Rf_ncols(a);
//
int p = Rf_nrows(b);
int q = Rf_ncols(b);
//
int k = m + p - 1;
int l = n + q - 1;

SEXP ret;
PROTECT(ret = Rf_allocMatrix(REALSXP, k, l));
F77_CALL(xcorr2d_f)
(m, n, p, q, k, l, REAL(a), REAL(b), REAL(ret));
UNPROTECT(1);
return (ret);

}

Registration of native routines for compiled code is achieved in two stages: first, creating
an array describing individual routines using R_CallMethodDef; then, actually registering
the routines with R using R_registerRoutines, as shown in Listing 3.6. Registration’s
benefits include a faster way to find the address of the entry point and a run-time check
concerning the number and type of arguments. The R_useDynamicSymbols routine in-
structs the .Call function to find only registered routines, even when no package is
provided, preventing unnecessary delay due to searching.

For further information, please refer to Writing R Extension: 5.4 Registering native rou-
tines.

Important

All the C code in Section 3.2.2 is stored within the AquaFortRmodulec.c file.

3.2.3 R Function

After finishing the Fortran subroutine and C functions, we can write the R function,
as shown in Listing 3.7. The first few lines contain the roxgen2 documentation for the
function. We use the .Call function to invoke the C function c_xcorr2d_f that will
invoke a Fortran subroutine xcorr2d_f.

https://cran.r-project.org/doc/manuals/R-exts.html#Registering-native-routines-1
https://cran.r-project.org/doc/manuals/R-exts.html#Registering-native-routines-1
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Listing 3.6 Registration of native routines
static const R_CallMethodDef CallEntries[] = {

{"c_xcorr2d_f", (DL_FUNC)&c_xcorr2d_f, 2},
{"c_conv2d_f", (DL_FUNC)&c_conv2d_f, 2},
{"c_cape_f", (DL_FUNC)&c_cape_f, 7},
{NULL, NULL, 0}};

void R_init_AquaFortR(DllInfo *dll)
{

R_registerRoutines(dll, NULL, CallEntries, NULL, NULL);
R_useDynamicSymbols(dll, FALSE);

}

It is crucial to add the following line to the package-level documentation (i.e.AquaFortR-package.R
file) to load the DLL and define them in the package’s namespace.

#' @useDynLib AquaFortR, .registration=TRUE

This is the end of the general workflow for developing an R package with Fortran code
using the .Call interface. In the src/ directory, Fortran modules reside in .f90 files, while
C routines are found in .c files. Some packages store their C code in an init.c file. All R
code should be kept in the R/ directory.

3.2.4 System Dependencies

Occasionally, you develop a package that needs system-dependent configuration or li-
braries before installation, such as FFTW. An executable is then executed by R CMD
INSTALL before any other action is performed to ensure the successful installation of the
package. R allows /configure scripts to check for these dependencies. The /configure
script can be written manually or using Autoconf.

Aaron Jacobs wrote about “An Autoconf Primer for R Package Authors.” It is a vital
tutorial on developing a /configure script for an R package. Furthermore, detailed
information concerning configuration and cleanup is available in Writing R extensions,
1.2 Configure-and-cleanup.

In case the configure script requires auxiliary files, it is advised that they should be
shipped with the R package in the tools directory. Numerous macros are available at the
GNU Autoconf Archive.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Configure-and-cleanup-1
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Configure-and-cleanup-1
https://www.gnu.org/software/autoconf-archive/The-Macros.html%5D
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Listing 3.7 Calling C in R
#' @title 2D cross-correlation using Fortran.
#'
#' @description Calculates the 2D cross-correlation
#' of two matrices `a` and `b` using compiled Fortran subroutine.
#'
#' @param a A matrix (2D array) of values.
#' @param b A matrix (2D array) of values.
#' @return A matrix representing the 2D cross-correlation of
#' the input matrices.
#' @export
#' @examples
#' a <- matrix(c(1, 2, 3, 4), ncol = 2)
#' b <- matrix(c(5, 6, 7, 8), ncol = 2)
#' xcorr2D_f(a, b)
#' @author Ahmed Homoudi
#' @export
xcorr2D_f <- function(a, b) {

stopifnot(length(dim(a)) == 2 | length(dim(b)) == 2)
result <- .Call(

c_xcorr2d_f,
a,
b

)
return(result)

}
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Chapter 4

Conclusions and Optimization
Insights

AquaFortR is an educational project for students and researchers in Atmospheric Science,
Oceanography, Climate, and Water Research. It aims to demonstrate that simple Fortran
scripts can meet the demand for accelerating R, especially considering that most data sets
in these fields consist of large discretised arrays representing earth system processes.

Fortran is one of the fastest programming languages, and multidimensional arrays are a
core part of it. Fortran subprogram calls are based on call by reference. In simpler terms,
they directly modify the variables in memory, and no additional space is allocated, saving
a lot of memory when dealing with immense arrays.

When integrating Fortran in R scripts, the old .Fortran interface should be avoided.
Instead, the dotCall64::.C64 interface should be utilised. It supports long vectors and
type 64-bit integers and provides a mechanism to avoid excessive argument copying. An-
other option to integrate Fortran in R is packaging and employing .Call, the modern
C/C++ interface. Packaging is advantageous since it delivers numerous benefits like code
tidiness and reusability.

Integrating Fortran in R provides access to the Open Multi-Processing (OpenMP), a
standardised API for writing shared-memory multi-process applications (i.e. all processors
share memory and data). The R package Romp, by Drew Schmidt, presents introductory
OpenMP implementation with R for C, C++, F77, and Fortran 2003.

Nowadays, multicore CPUs are easily accessible. With their proliferation, harnessing
the capability of parallelism through OpenMP is a practical reality. For example, the
performance of CAPE estimation can easily be improved by passing the atmospheric
profiles from R to Fortran (i.e. array[latitude, longitude, level, time]) and distributing the
calculation among cores, simultaneously exploiting the power of Fortran and parallelism.
Moreover, the convolution of precipitation data can be sped up by passing the data to
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Fortran and sharing the calculation along the time axis among cores.

Cross-correlation and convolution can be optimised by utilising the Fast Fourier Trans-
form (FTT). The computational efficiency originates from the fact that FFT reduces the
computation from O[N2] operations to O[Nlog2 N] operations. It is possible to use the
FFTW C subroutine library to compute the discrete Fourier transform (DFT) in one or
more dimensions, either in Fortran or C. Furthermore, Fortran can directly utilise linear
algebra libraries such as BLAS, LAPACK, and LINPACK.

R is a versatile, growing, and expanding language and environment for statistical com-
puting and graphics. It excels in wrangling data and generating publication-quality visu-
alisations (e.g., ggplot2), making it a standout choice. While it is primarily focused on
flexibility and functionality rather than performance, integrating Fortran compiled codes
can render substantial speed enhancements.
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Further Reading

• Fortran and R – Speed Things Up by Steve Pittard (https://www.r-bloggers.com/
2014/04/fortran-and-r-speed-things-up/)

• The Need for Speed Part 1: Building an R Package with Fortran by Avraham
Adler (https://www.r-bloggers.com/2018/12/the-need-for-speed-part-1-building-
an-r-package-with-fortran-or-c/)

• The Need for Speed Part 2: C++ vs. Fortran vs. C by Avraham Adler (https://
www.avrahamadler.com/2018/12/23/the-need-for-speed-part-2-c-vs-fortran-vs-c/)

• The R Manuals edited by the R Development Core Team (https://cran.r-project.
org/manuals.html)

• Writing R Extensions by R Core Team (https://cran.r-project.org/doc/manuals/r-
release/R-exts.html#Writing-R-Extensions)

• R internals by Hadley Wickham (https://github.com/hadley/r-internals)
• How to write your own R package and publish it on CRAN by Cosima Meyer & Den-

nis Hammerschmidt (https://www.mzes.uni-mannheim.de/socialsciencedatalab/
article/r-package/#section1)

• Advanced R by Hadley Wickham (http://adv-r.had.co.nz/)
• Modern Fortran Tutorial by Yutaka Masuda (https://masuday.github.io/fortran_

tutorial/index.html)
• Extend R with Fortran by Yutaka Masuda (https://masuday.github.io/fortran_

tutorial/r.html)
• Fortran 90 Tutorial by Stanford University (http://web.stanford.edu/class/me200c/

tutorial_90/)
• Fortran Libraries by Fortran Wiki (https://fortranwiki.org/fortran/show/Libraries)
• Fortran Best Practices by Fortran Community (https://fortran-lang.org/en/learn/

best_practices/#fortran-best-practices)
• Fortran 90 Reference Card by Michael Goerz. (https://web.pa.msu.edu/people/

duxbury/courses/phy480/fortran90_refcard.pdf)
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• Hands-On Programming with R by Garrett Grolemund (https://rstudio-education.
github.io/hopr/)

• r-spatial by Edzer Pebesma, Marius Appel, and Daniel Nüst (https://r-spatial.org/)
• Spatial Data Science: With Applications in R by Edzer Pebesma and Roger Bivand

(https://r-spatial.org/book/)
• R for Data Science by Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grole-

mund (https://r4ds.hadley.nz/)
• Introduction to Environmental Data Science by Jerry Davis (https://bookdown.org/

igisc/EnvDataSci/)
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